736 research outputs found

    Measurement of Birefringence of Low-Loss, High-Reflectance Coating of M-Axis Sapphire

    Get PDF
    The birefringence of a low-loss, high-reflectance coating applied to an 8-cm-diameter sapphire crystal grown in the m-axis direction has been mapped. By monitoring the transmission of a high-finesse Fabry-Perot cavity as a function of the polarization of the input light, we find an upper limit for the magnitude of the birefringence of 2.5 x 10^-4 rad and an upper limit in the variation in direction of the birefringence of 10 deg. These values are sufficiently small to allow consideration of m-axis sapphire as a substrate material for the optics of the advanced detector at the Laser Interferometer Gravitational Wave Observatory

    Comparison of single-layer and double-layer anti-reïŹ‚ection coatings using laser-induced damage threshold and photothermal common-path interferometry

    Get PDF
    The dielectric thin-ïŹlm coating on high-power optical components is often the weakest region and will fail at elevated optical ïŹ‚uences. A comparison of single-layer coatings of ZrO2, LiF, Ta2O5, SiN, and SiO2 along with anti-reïŹ‚ection (AR) coatings optimized at 1064 nm comprised of ZrO2 and Ta2O5 was made, and the results of photothermal common-path interferometry (PCI) and a laser-induced damage threshold (LIDT) are presented here. The coatings were grown by radio frequency (RF) sputtering, pulsed direct-current (DC) sputtering, ion-assisted electron beam evaporation (IAD), and thermal evaporation. Test regimes for LIDT used pulse durations of 9.6 ns at 100 Hz for 1000-on-1 and 1-on-1 regimes at 1064 nm for single-layer and AR coatings, and 20 ns at 20 Hz for a 200-on-1 regime to compare the //ZrO2/SiO2 AR coating

    Investigating the relationship between material properties and laser-induced damage threshold of dielectric optical coatings at 1064 nm

    Get PDF
    The Laser Induced Damage Threshold (LIDT) and material properties of various multi-layer amorphous dielectric optical coatings, including Nb2O5, Ta2O5, SiO2, TiO2, ZrO2, AlN, SiN, LiF and ZnSe, have been studied. The coatings were produced by ion assisted electron beam and thermal evaporation; and RF and DC magnetron sputtering at Helia Photonics Ltd, Livingston, UK. The coatings were characterized by optical absorption measurements at 1064 nm by Photothermal Common-path Interferometry (PCI). Surface roughness and damage pits were analyzed using atomic force microscopy. LIDT measurements were carried out at 1064 nm, with a pulse duration of 9.6 ns and repetition rate of 100 Hz, in both 1000-on-1 and 1-on-1 regimes. The relationship between optical absorption, LIDT and post-deposition heattreatment is discussed, along with analysis of the surface morphology of the LIDT damage sites showing both coating and substrate failure

    Medium range structural order in amorphous tantala spatially resolved with changes to atomic structure by thermal annealing

    Get PDF
    Amorphous tantala (a-Ta2O5) is an important technological material that has wide ranging applications in electronics, optics and the biomedical industry. It is used as the high refractive index layers in the multi-layer dielectric mirror coatings in the latest generation of gravitational wave interferometers, as well as other precision interferometers. One of the current limitations in sensitivity of gravitational wave detectors is Brownian thermal noise that arises from the tantala mirror coatings. Measurements have shown differences in mechanical loss of the mirror coatings, which is directly related to Brownian thermal noise, in response to thermal annealing. We utilise scanning electron diffraction to perform Fluctuation Electron Microscopy (FEM) on Ion Beam Sputtered (IBS) amorphous tantala coatings, definitively showing an increase in the medium range order (MRO), as determined from the variance between the diffraction patterns in the scan, due to thermal annealing at increasing temperatures. Moreover, we employ Virtual Dark-Field Imaging (VDFi) to spatially resolve the FEM signal, enabling investigation of the persistence of the fragments responsible for the medium range order, as well as the extent of the ordering over nm length scales, and show ordered patches larger than 5 nm in the highest temperature annealed sample. These structural changes directly correlate with the observed changes in mechanical loss.Comment: 22 pages, 5 figure

    Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock

    Full text link
    We report 10-ps correlated photon pair generation in periodically-poled reverse-proton-exchange lithium niobate waveguides with integrated mode demultiplexer at a wavelength of 1.5-um and a clock of 10 GHz. Using superconducting single photon detectors, we observed a coincidence to accidental count ratio (CAR) as high as 4000. The developed photon-pair source may find broad application in quantum information systems as well as quantum entanglement experiments.Comment: 6 pages, 4 figures, presented at 2007 CLEO conferenc

    Optical absorption of ion-beam sputtered amorphous silicon coatings

    Get PDF
    Low mechanical loss at low temperatures and a high index of refraction should make silicon optimally suited for thermal noise reduction in highly reflective mirror coatings for gravitational wave detectors. However, due to high optical absorption, amorphous silicon (aSi) is unsuitable for being used as a direct high-index coating material to replace tantala. A possible solution is a multimaterial design, which enables exploitation of the excellent mechanical properties of aSi in the lower coating layers. The possible number of aSi layers increases with absorption reduction. In this work, the optimum heat treatment temperature of aSi deposited via ion-beam sputtering was investigated and found to be 450 °C. For this temperature, the absorption after deposition of a single layer of aSi at 1064 nm and 1550 nm was reduced by more than 80%
    • 

    corecore